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The problem of steady motion and thermal behaviour of a volatile, wetting liquid in 
an open cavity under low gravity is defined and examined. The domain geometrically 
approximates a two-phase pore of liquid on a wicking structure surface, and consists 
of a 1 to 10' pm wide rectangular cavity bounded by a saturated vapour and liquid 
reservoir on its upper and lower surfaces, respectively. Thermal non-equilibrium and 
convection are established by symmetrically superheating or subcooling the pore 
boundaries by - 1 K relative to the vapour. Numerical analyses show that although 
thermocapillary flow competes with interfacial phase change in dictating the circulation 
and flow structure, it tends to reinforce the convective effects of evaporation and 
condensation on surface temperature and heat transport. In addition, highly wetting 
fluids with curved menisci are characterized by greater circulation intensities and 
dynamic pressure gradients than a flat surface. The magnitude of these gradients 
suggests that the fixed menisci shapes assumed in this study are unrealistic, and that the 
influence of convection on surface morphology should be considered. 

1. Introduction 
Understanding the nature of two-phase convection near the surfaces of liquid-filled 

wicking structures and porous media is important to the design of many engineering 
systems. Example applications include heat pipes, capillary pumped loops, spacecraft 
liquid acquisition devices and passive cryogenic pressure control systems. In most 
cases, the wicking structure surface is exposed to a vapour or vapour/gas mixture, and 
consists of numerous cavities connected to a channel, reservoir or porous internal 
region. Thermal non-equilibrium between the liquid, vapour and structure drives 
several convection modes within these surface pores. The most notable one is 
thermocapillary flow which arises from thermally induced surface tension variation 
along the meniscus. Two other modes that become important when the liquid is close 
to a saturated state are evaporation and condensation. All three of these can greatly 
influence heat transfer and performance by causing a departure from the basic-state 
interfacial temperature distribution and altering the morphology of the free surface. 
The latter effect can be particularly detrimental in applications where a pressure 
differential is maintained across the liquid/gas interface, such as low-gravity fluid 
acquisition devices and passive pressure control systems. Surface deformation in these 
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cases can lead to loss of mechanical equilibrium and degradation in liquid retention 
capability. 

Although the influence of combined two-phase thermocapillary flow on liquid 
retention has never been theoretically assessed, the individual convection modes 
associated with this problem have been examined separately for numerous applications. 
Most prior work involving thermocapillarity and the closely related topic of combined 
thermocapillary-buoyancy-driven flow has been done in the area of materials 
processing (Ostrach & Kamotani 1992). A popular geometry for the study of pure and 
combined convection is the rectangular cavity with isothermal sidewalls and a 
horizontal upper free surface. Numerical investigations by Bergman & Ramadhyani 
(1986), Bergman & Keller (1988), Jue, Ramaswamy & Akin (1991), and Hadid & Roux 
(1992) yielded insight into the sensitivity of flow variables to key dimensionless 
parameters. Several researchers have applied the same geometry to evaluate 
thermocapillary convection with a deformable liquid surface. Sen & Davis (1982), Sen 
(1986) and Strani, Piva & Graziani (1983) applied asymptotic methods to determine the 
flow field and free surface shape at the ends and core of differentially heated slots, while 
Zebib, Homsy & Meiberg (1985) and Carpenter & Homsy (1989) examined the effect 
of interface geometry by means of perturbation techniques. Cylindrical geometries 
have also been used to investigate thermocapillary- and buoyancy-driven flow in melt 
regions. Earlier studies by Fu & Ostrach (1983), Shen et al. (1990), and Kobayashi 
(1988) assumed a fixed surface independent of convective effects. Somewhat more 
recently, Duranceau & Brown (1989), Hyer, Jankowski & Neitzel (1991) and Lan & 
Kou (1991) addressed the problem of a cylindrical float zone with a deformable 
interface. They applied a pinning condition at the contact point and observed little 
flow-induced deformation. 

In all cases the variation of free surface geometry due to thermocapillarity was 
treated as a lower-order effect. It was usually neglected by assuming a small thermal 
variation of surface tension with respect to a reference (i.e. low crispation number Cr) 
and low ratio of viscous to surface tension forces (i.e. low capillary number Ca). In 
combined thermocapillary-buoyancy-driven flows the deformation under terrestrial 
gravity was caused by hydrostatic effects, while the surface remained essentially flat in 
a microgravity environment. These results and the assumption of vanishingly small Ca 
and Cr were entirely consistent with the relatively large domains considered in these 
studies. However, in an analysis of pure thermocapillary flow, Sen (1986) applied an 
independent coupling of the meniscus force balance condition to show that the 
interface can undergo significant deflections with large values of Cr. Assuming a 
prescribed contact angle, Cuvelier & Driessen (1986) found that the free boundary is 
highly sensitive to Ca. Furthermore, Kamotani & Platt (1992) recently showed that 
variation in surface geometry could greatly influence convection within the cavity for 
thermocapillary-buoyancy-driven flow. Through experiments and numerical analysis, 
they compared the convection and heat transfer characteristics of a flat and curved 10"- 
contact angle surface, and noted a marked reduction in thermocapillarity, flow 
intensity and local heat transfer rate with the highly curved surface. 

The small cavities associated with wicking structures and retention devices present 
a situation where surface tension forces are dominant with relatively large values of Ca 
and Cr. In such instances, the surface deformation arising from thermocapillarity may 
be significant and could affect the flow field and heat transfer in a variety of ways. 
Thus, results from the above investigations have only marginal application to the study 
of convection on the surfaces of porous structures. 

Evaporation and condensation add yet another degree of complexity to this 
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problem. Most prior studies of evaporating and condensing menisci have focused on 
either the intrinsic meniscus or the submicron region near the interline where the solid 
substrate plays an important role in surface phenomena. Examinations of the 
submicron region have concentrated on the behaviour of thin liquid films and menisci 
close to solid surfaces. Here, buoyancy and convective terms in the momentum 
equation are typically ignored, and the relationship between thennocapillary stress and 
liquid/solid intermolecular forces is emphasized (Potash & Wayner 1972; Renk & 
Wayner 1979; Werhle & Voulelikas 1985; Mirsamoghadam & Catton 1988). In a study 
of evaporating and condensing film stability, Burelbach, Bankoff & Davis (1988) 
treated the van der Waals forces as a body force term and noted that the combined 
action of this attraction, thermocapillarity and interfacial flow could lead to significant 
instability and deformation of the surface. This behaviour was also observed in several 
other references cited by Burelbach et al. Recently, Swanson & Herdt (1992) and 
Swanson & Peterson (1993) modelled the complete meniscus by matching solutions in 
the interline and intrinsic regions. 

It should be clear from the above discussions that the dominance of surface tension 
forces, coupled with interfacial phase change, makes the fluid retention problem quite 
different from others. This uniqueness is accentuated by the very small contact angles 
encountered in fluid retention systems (as compared with contact angles - 90" for 
melts in materials processing) and by the mass transfer with liquid in the porous 
structure. A situation very similar to this problem was examined by Chen, Oshima & 
Hinada (1989) who assessed a one-sided model of a superheated wetting liquid in a 
square cavity with isothermal sidewalls. Like other researchers, they ignored the 
influence of convection on surface morphology. Although a competition between 
thermocapillarity and evaporation in dictating flow structure was observed, they did 
not provide a firm explanation of this phenomenon or consider the related aspect of 
condensation. In addition, by resorting to a streamfunction-vorticity formulation, 
they failed to recognize the dramatic influence of small contact angles and 
thennocapillary flow on interfacial pressure and surface morphology. 

The limited applicability of prior studies and unique features of retention phenomena 
warrant an original definition and thorough investigation of this unfamiliar problem. 
Although we are primarily concerned with determining if thermocapillarity and mass 
transfer can lead to large variations in surface morphology, given the complexity of the 
problem and the large number of variables involved it is necessary to first understand 
the nature of velocity, pressure and temperature distributions within the pore domain. 
This can be best accomplished by examining the steady-state flow field about a fixed 
circular surface. Such a domain will be examined in this paper, but we will adopt an 
approach that provides a basis for studying the more complex problem of a deforming 
surface in part 2 (Schmidt, Chung & Nadarajah 1995). In the next section, the 
mathematical model appropriate for a non-deforming pore domain will be developed, 
while in $ 3 scaling analyses will be performed to simplify these equations and assess the 
importance of various terms in the boundary conditions. Following a brief summary 
of the numerical method used to solve the defining equations in $4, the results of 
numerical simulations will be presented and discussed in $5. 

2. Theoretical model 
The solid substrate of a typical porous structure usually consists of a complex 

interweave of metal wires or random arrangement of sintered metallic fragments. 
Basing an assessment on an actual application would be very difficult owing to the 
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extreme variability in contact surface geometry and uncertainty regarding interior flow 
conditions. To avoid this issue, we consider the domain shown in figure 1 which 
represents a greatly simplified rendition of a single pore, but still permits taking into 
account key meniscus transport phenomena. The domain consists of a two-dimensional 
rectangular groove partially filled with an incompressible Newtonian liquid. The cavity 
is assumed to be oriented with respect to a uniform downward-pointing acceleration 
field. The left and right sides of the pore (boundaries 1 and 3, respectively) consist of 
solid vertical sidewalls at temperature T,. The lower boundary 2, which is also at 
temperature T,, opens to a large reservoir of liquid to enable balancing of mass flow 
through the cavity. The upper surface (boundary 4) is represented by a circular 
meniscus y(s)  which is symmetric about the pore centreline. This interface is bounded 
by an inert vapour which is at saturation temperature T, far from the interface. The 
meniscus is assumed to wet the solid sidewalls at an acute contact angle w, and is 
further characterized by the unit normal and tangent vectors n, and si and contour 
angle a. The temperature difference T,-T, drives all fluid flow and heat transfer within 
the cavity. 

Considering a fixed circular surface is equivalent to assuming a gravity-free 
environment and ignoring pressure, vapour recoil and viscous stress terms in the 
normal jump momentum balance for the meniscus. Under terrestrial conditions, this 
assumption is probably inappropriate, since the length scales at which surface tension 
dominates over thermocapillarity and viscosity ( D  2 lo2 pm) yield increasing con- 
tributions from hydrostatic pressure and buoyancy. However, in microgravity with 
moderate pore dimensions, we can expect to find instances where such an assumption 
is valid. Another important assumption is the neglect of intermolecular forces between 
liquid and solid. For the geometry and dimensional range of this problem, 
intermolecular attraction between the liquid and solid is best accounted for by a 
contact angle constraint rather than a corrected surface or body force. The scaled 
governing equations for the fluid in the cavity, with the Boussinesq approximation, are 
expressed as 

6.i = 0, (1) 

- + C ; ~ , i + q , - 6 , ~ i - G r a , T =  a6 0, 
at 

aT 1 -+ V T -- Tii = 0. 
at J Pr (3) 

Although only steady-state solutions will be considered in this study, the transient 
terms are included in the problem definition since they are used to obtain the numerical 
steady-state solution. Here, is the fluid velocity; T is the temperature; P is the 
dynamic pressure; and a, is the unit vector in the direction of the imposed gravitational 
acceleration. The variables describing this problem are scaled on the pore width D and 
the viscous time scale D2/v ,  where v is the kinematic viscosity. For temperature, we 
scale the difference between the liquid and vapour temperatures by lATl = l~-T,,l,  
where and are the sidewall and vapour temperatures, respectively. The scaled 
vapour temperature conveniently assumes the same value of 0 for both superheating 
and subcooling. With superheating the sidewall temperature is fixed at T = 1, while 
with subcooling, it is held at T = - 1. Apart from the linear temperature dependence 
applied to density p and surface tension y, all thermophysical properties are treated as 
constant. Here y and p are referenced at the minimum domain temperature which is 



Thermocapillary fIow at low gravity. Part I 327 

I Boundary 2 x 2 = o .  

X I  = 0 XI 

FIGURE 1. Problem domain. 

To for superheating and 
the scaling are the Grashoff number Gr and Prandtl number Pr, defined as 

for subcooling. The dimensionless parameters arising from 

Gr = Dsg#?(A TI/( v'), 
Pr = v/[ 

(4) 
( 5 )  

where #? and [ are the thermal expansivity and diffusivity, respectively. 
The unique aspects of this problem are embodied in the boundary conditions applied 

at the sidewalls, reservoir interface and meniscus surface. Both of the sidewalls are 
assumed to be isothermal and are held at T =  1 and - 1  for superheating and 
subcooling, respectively. We also assume impermeability and no-slip to yield the 
velocity condition = 0. 

On boundary 2, we apply the same temperature condition as the sidewall, that is 
T = & 1 .  We also assume that the flow into and out of the cavity is parallel and 
uniform. Consequently, V, = 0, and the average flux required to balance the total flow 
across boundary 4 is applied uniformly as the V, boundary condition. From an overall 
pore mass balance we obtain 

r, and r, are the areas of boundaries 2 and 4, respectively. Rs defines the degree of 
non-equilibrium (i.e. difference in state between the liquid and vapour) that can be 
maintained per unit mass undergoing phase change at a volatile interface. It relates 
mass fluj to the interfacial temperature jump according t o j  = T / R s  and is derived by 
applying equilibrium thermodynamic assumptions to the Hertz-Knudsen equation on 
boundary 4 (Palmer 1976): 

Here, e is the accommodation coefficient and represents the resistance to mass 
transfer. For a surface free from contaminants, e = 1. Other variables in (7) include the 
ratio of liquid to vapour density f, latent heat L,  vapour molecular weight M, and 
universal gas constant R,. Rs = d corresponds to the equilibrium limit, where the 
interfacial temperature is constant and equal to the saturation value, T = 0. 1/Rs = 0 
corresponds to the non-volatile case in which j = 0. 
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The velocity conditions on boundary 4 are obtained from the tangential jump 
momentum and jump mass balances. For the tangential balance, we apply the one- 
sided approximation and ignore vapour viscous stress to yield 

Ma 
Pr 7 t j  nj = - - T.6, 

where the scaled viscous stress tensor is defined as 7ij = ( K,j + C;,J, and the Marangoni 
number Ma is 

(9) 
lw/aTlDlATI 

PVC 
Ma = 

The normal gradients of K and V, are interdependent and mutually satisfied by 
applying the Neumann condition in (8) to either velocity component. By applying (8) 
to 5, we can use the equation for local mass flux as the condition for V,, namely 

For temperature on boundary 4, we take into account the heat transfer due to 
convective motion of the vapour relative to the liquid, latent heat transport and kinetic 
energy transport. When all these effects are included, the scaled energy equation 
becomes 

where 7;) is the temperature gradient in the vapour at the interface, andf, is the ratio 
of vapour to liquid thermal conductivity. Sic,  Bi, and BikeTa are the so-called 
convective, mass transfer and kinetic energy Biot numbers, respectively and are 
defined as 

Tt n, - f k  T,(t)ni = - (Bi, + Bi, +Bike T 2 )  T, (1 1) 

Bi, = hD/k,  (12) 
Bi, = l /(RsE),  (13) 

(14) 

E = klATI/@vL). (1 5)  

Bike = @ - 1 )  v3p/(2D2klAflRs3). 

The parameter E has been termed the evaporation number by Burelbach et al. (1988) 
and is given by 

E represents the ratio between the viscous and evaporation/condensation time 
scales (i.e. D2/v  and pD2L/(klAT1), respectively) and is indicative of the rate of phase 
change relative to momentum diffusion in the cavity. A large value of E signifies a high 
rate of evaporation or condensation and shorter time scale relative to viscous effects. 
By applying the one-sided assumption (i.e. f,+O) and combining the Biot numbers 
defined in (12H14) into a single term Bi, we can express the energy jump balance in 
a form equivalent to Newton’s law of cooling, that is 

T i n i  = -BiT.  (16) 
Equations (1H16) completely define the problem and will be used to obtain the 

steady-state fluid flow and temperature fields. 

3. Scaling analysis 
To make the numerical investigations physically relevant, we first ascertain via 

parametrics the magnitude and sensitivity of the principal dimensionless groupings 
identified in $2 over a range of thermophysical properties, pore widths D and 
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FIGURE 2. Sensitivity of dimensionless parameters associated with solution of and P: 
upper and lower bounds. 

superheating/subcooling limits IATI. Using the thermophysical properties of water, 
ethanol, Refrigerant-1 14 and ammonia as a reference, a modified parameter value, in 
which D and /AT] are factored out, is calculated for each fluid and used to estimate 
parameter bounds at different values of D and ]AT]. 

to lo4 pm. 
Although 1 pm represents a reasonable lower limit for most fine mesh screens, porous 
surfaces and wicking structures, we select pm to broaden the range of study. In 
addition, lop2 pm generally represents the upper limit at which long-range inter- 
molecular forces between the liquid and solid begin to influence surface morphology. 
The upper bound of D, lo4 pm (= 1 cm), is arbitrarily defined as a maximum, since 
characteristic dimensions in which D 2 lo5 pm (= 10 cm) fall more in the category of 
a small container and out of the size range of this study. The maximum superheat AT 
that can be sustained without causing nucleation depends on the fluid, contact surface 
roughness and pore width. For the size range considered here, a bound of lo-' to 1 K 
seems reasonable. However, to emphasize the effect of larger superheats, which are 
encountered with thin films, an upper limit of 10 K is assumed. 

Solution of velocity and dynamic pressure requires the parameters in (2), (8) and 
(10). Fixing Pr = 1, the sensitivities of Gr, Ma and l/Rs to D and AT are shown in 
figure 2. Note that these groupings exhibit the same proportional functional 
dependence on AT. We find that the different functional behaviours of Ma and Gr on 
D divide the velocity solution into three types of regimes. The thermocapillary regime 
occurs at D < lo3 pm where Ma 9 Gr. In this region, velocity is dictated by surface 
tension variation and to a comparable extent the sensitivity of 1/Rs to temperature. 
The influence of Gr is essentially non-existent. 

Extrapolating the trends in figure 2 to larger pore widths indicates that the regime 
where buoyancy forces dominate over thermocapillary and evaporative effects occurs 
at D > lo5 pm). Between this point and the upper limit for pure thermocapillary flow 
(D - lo3 pm), there exists a regime where buoyancy and thermocapillary forces 
compete. Here, the forces can either augment or offset each other depending on the 
orientation of the acceleration field and locations of applied heating and cooling. 

The complete temperature solution primarily involves the boundary condition (1 6). 

To evaluate sensitivity to pore size, we consider a range of D from 
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FIGURE 3. Sensitivity of dimensionless parameters associated with solution of T. 

The relative sensitivity of the two variables arising from (16), Bi, and Bike, is shown 
in figure 3. Bi, increases linearly with D from 10 at D = 1 p, to los at D = lo4 pn. 
Although Bike varies linearly with Da and AT, its magnitude is so low that it never 
contributes to interfacial temperature. The trend in figure 3 suggests that it may 
become important only at characteristic dimensions significantly greater than the 
upper limit of this study. 

In summary, we see that Gr and Bi,, are vanishingly small in the size range 
considered here and can be ignored in this problem. The key parameters needed for 
solution of velocity are Ma, Rs and Bi which are in the ranges: 10-1 < Ma < lo3, 
lo-' < Rs < lo3 and 1 < Bi c lo4. 

4. Numerical model 
A detailed description of the numerical model is given by Schmidt (1993) and only 

its key features will be summarized here. The finite element method was selected mainly 
because of its strength in handling unstructured grid domains and free boundaries. 
Algebraic equations for the flow variables are obtained by applying the Galerkin 
method to derive weak forms of the scaled momentum and energy equations. These 
equations are discretized with respect to time via a semi-implicit Crank-Nicolson 
scheme, while continuity is enforced using a SIMPLER-type algorithm (Patankar 1980). 

An example of a typical finite element domain consisting of 25 x 20 = 500 
quadrilateral elements is shown in figure 4. We originally followed the approach of 
other researchers and employed a quadratic variance for velocity and temperature 
basis functions and a linear function for pressure. This worked well in all regions except 
the meniscus interline where thermocapillary stress and interfacial mass transport are 
greatest and cause substantial pressure gradients. Unless the comer elements are made 
sufficiently small, this abrupt change in pressure is inaccurately applied across the 
entire element and over-influences the velocities at adjoining nodes. 

To correct this problem, higher-order interpolations in the corner and mixed-order 
functions in the sidewall and meniscus regions are used for P and T. This enables 
application of the standard first- and second-order formulations in the interior, but 
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FIGURE 4. Example finite element domain consisting of 25 x 20 quadrilateral elements. 

requires seven element configurations. For pressure, a quadratic approximation is 
applied at the two corner elements, which have a 9-node element domain and coincide 
with the velocity interpolation. In the interior, however, we retain a first-order 
variation to preserve the physical relationship between pressure and velocity. This 
approach requires the use of mixed-order elements. For example, the function applied 
along the meniscus is formulated at each of the six local nodes from the first- and 
second-order Lagrange polynomials. Similarly for temperature fourth- and combined 
fourth/second-order interpolations were used. 

The first (i.e. innermost) loop in the computer model determines a velocity field that 
satisfies (2) based on an estimated pressure distribution. The second loop (i.e. SIMPLER 
algorithm) adjusts the velocity and pressure field. Once convergence is established for 
6 and P, the third loop computes the temperature field. In the fourth loop, the time 
step is advanced to steady state, and temporal convergence is checked with the criterion 
that variables vary no more than 0.01 % from their previous values. In the velocity and 
SIMPLER loops, P is fixed at zero at the two comers at the base of the pore (i.e. lower 
left- and right-hand corners). By separating pressure from the stress tensor and 
restricting application of Green’s theorem to the viscous stress tensor in the weak 
formulation of the momentum equation, we eliminate the need to specify pressure at 
the other boundary nodes. 

5. Results and discussion 
The problem is complicated by the fact that four dimensionless groupings, i.e. Ma, 

Rs, Bi and o, are needed to define the solution. To obtain a clearer understanding of 
the contributions made by each convection mode, we first examine the simpler cases of 
conduction and single-mode convection before considering the combined thermo- 
capillary/interfacial flow regime. Thus, we consider four cases, namely (i) the basic 
state or non-convective regime, (ii) pure evaporation and condensation, (iii) subcooled 
and superheated thermocapillary flow, and (iv) combined mode convection. To aid in 
the analysis, we derive three dependent parameters which characterize the key 
processes occurring here, namely interfacial heat and mass transfer, the flow field in the 
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cavity and the total thermocapillary force on the meniscus. For interfacial transport, 
we define the thermal potential 17 by 

17 = Jr, TdT,. 

This quantity is related to the total heat and mass transfer across the meniscus by 
Q = Binand J = 17/Rs, respectively. It is also proportional to the average temperature 
difference between the meniscus and bulk vapour. 

The influence of interfacial temperature, contact angle and surface orientation on 
thermocapillary stress is characterized by the surface traction = MaBJPr, where 8, 
represents the nonlinear contribution due to Bi and w ,  namely 

oi = - Bi T-s, dr,.  i, t; 
In (18) g, is the unit vector parallel to the gradient Ts, while g,s,/g,n, is the ratio 
between the tangential and normal components of interfacial heat flux. 8, is the non- 
linear contribution to the total thermocapillary force in the x,-direction, and heat flux 
tangent to the surface. With heat flow normal to the surface (i.e. g,s,=O and 
g, n, = l), 8, = 0. Alternatively, with a completely insulated boundary (g, n, = 0), all 
heat at the surface flows tangentially thus yielding pure thermocapillary flow. Note that 
owing to the symmetry of the problem, the horizontal component 8, vanishes, and 
only the vertical component represented by 8, is non-zero when w + 90". 

In addition to J,  the flow field is characterized by a half-cavity circulation C that 
arises from the angular momentum caused by inequality between velocities along the 
centreline and no-slip region of the sidewall, that is 

For the left half-cavity, the equation for C is integrated counterclockwise along the 
composite surface rcontaining the vertices (xl, x,) = (0, l), ( O , O ) ,  (0.5,O) and (0.5,yF)). 
As we will discuss later, half-cavity circulation is useful for assessing the competition 
between simultaneously occurring convection modes. 

5.1. Basic state 
In the basic state, heat transfer between the pore boundaries occurs solely by 
conduction. Since the boundary conditions for surface velocity and thermocapillary 
stress are expressed as functions of T and a T/as, the basic-state interfacial temperature 
yields insight regarding the driving mechanisms for convection within the cavity. To 
examine this regime, we set K = 0 and solve the steady-state diffusion equation for 
temperature Tj, = 0 while applying the Robin condition in (16). 

Several calculations were performed within the parameter ranges of 1 < Bi < 10' 
and 0 < w < 90". The sensitivity of liquid temperature to Bi is illustrated in figure 5 
which compares the interfacial temperature distributions corresponding to w = 15", 
and Bi = 1, 10 and 10'. The most obvious trend from these plots is the increase in 
cavity thermal gradient at larger values of Bi. As Bi+ coy conduction becomes the rate- 
limiting process for heat transfer, and the gradient must increase to support enhanced 
heat transfer between the liquid and vapour. In addition, the increased heat transfer 
with the vapour phase results in a lower average temperature difference between the 
surface and bulk vapour, that is (TI+O. This represents the state of complete 
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FIGURE 5. Magnitude of basic-state interfacial temperature IT1 versus x,  at o = 15" 
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FIGURE 6. Magnitude of basic state thermal potential Il7J versus w and Bi. 

equilibrium between the vapour and liquid and is consistent with the definition of Rs 
in that R r - t O .  Alternatively, as Bi+O, the non-equilibrium limit is approached, 
1/Rs +. 0, and surface convection becomes the rate-limiting process. This reduces the 
liquid thermal gradient but raises the temperature difference between the liquid and 
vapour, I TI + 1. 

The overall influence of Bi and o on heat and mass transfer is illustrated in figure 6 
which shows the variation of I Z l l  for the basic state (i.e. In,\) over the aforementioned 
parameter ranges. As explained earlier, increasing Bi lowers the average temperature 
difference between the liquid and vapour, thereby reducing Iq. The most significant 
effects of contact angle are the change in area available for heat transfer and the 
variation of T and thermal gradient along the surface i3T/asS. The change in T and 
aT/as is less with smaller contact angles due to the surface's increase in area and steeper 
orientation relative to the internal temperature gradient. Since the total supportable 
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0 

FIGURE 7. Magnitude of basic state thennocapillary force lBobl versus o and Bi. 

heat transfer at a given Bi becomes greater as w -+ 0, preservation of the pore energy 
balance requires that the thermal gradient decrease and the temperature distribution 
become more uniform. These effects and the increase in surface area mutually 
contribute to raising 1I7J as w -+ 0. This behaviour is especially evident at lower Bi, 
because the surface temperature becomes more uniform as it approaches the constant 
bulk vapour temperature. 

Although fluid convection and stress are ignored, the surface temperature 
distributions associated with the basic state yield a aT/as which can be characterized 
in terms of the normalized total thermocapillary force 0, (i.e. @2b). Figure 7 shows how 
l@zb( varies with Bi and w. Reducing w generally increases the thermocapillary force, 
although at Bi = 1, actually attains a small maximum at 15" < w < 45". The more 
important observation, however, is that the total force vanishes as w+90° and the 
surface flattens. The sensitivity of 10,J to contact angle also tends to increase with 
larger Bi because of the concentration of temperature change near the sidewalls at this 
condition. In other words, a greater portion of the total thermocapillary force becomes 
restricted to the vertical regions of the surface as w is lowered. 

5.2. Pure evaporation and condensation 
To model pure evaporation and condensation, the thermocapillary stress is ignored by 
setting Ma = 0. This minimizes the tangential component of surface velocity, resulting 
in a vertically oriented flow field. An example of the streamfunction Y and temperature 
distributions for condensation and evaporation with Rs = Bi = 1 and w = 15" is 
shown in figure 8. Although no surface traction is present, a tangential component of 
surface velocity does exist due to curvature and the non-uniformity in temperature. 
This can be seen by the slight bending of the streamlines towards the sidewall near the 
meniscus. This directional bias arises because the temperature difference between the 
meniscus and vapour, which represents the driving potential for mass transport, is a 
maximum at the contact line. The main consequence of this phenomenon is an increase 
in the local vorticity near the surface and strengthening of the circulation present on 
either side of the cavity. 

Figure 8 also indicates the typically lower flow intensities associated with 



Thermocapillary flow at low gravity. Part 1 335 

Subcooling Superheating 
1.0 

0.8 

0.6 

x2 

0.4 

0.2 

0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 1.0 

X1 *1 

FIGURE 8. Flow field and temperature distributions for pure interfacial flow with Rr = lo-'. 
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FIGURE 9. Deviation of thermal potential from basic state l 7 / Z Z ,  versus Bi and w 
for pure interfacial flow. 

condensation. The reason for this becomes clearer upon examination of figure 9 which 
shows the departure of 17 from the basic state via the ratio Z7/l7,. With evaporation, 
l7/Z7* > 1, which implies that the average temperature difference between the meniscus 
and the bulk vapour is always greater than the basic-state value. This agrees with the 
results of Chen et al. (1989) who noted the same augmenting influence of evaporation 
on interfacial heat and mass transfer. This tendency is due to compression of isotherms 
caused by the flow of superheated liquid from the bottom of the cavity which raises the 
temperature near the surface. With condensation, Z7/I7* -c 1 because the downward 
flow distends the temperature field about the surface and compresses the isotherms 
towards the bottom of the cavity. The condensation of warm liquid on the surface 
raises the temperature, thus suppressing the driving potential for heat and mass flow 
into the cavity and lowering 17 relative to the basic state. 
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FIGURE 10. Deviation of thermocapillary force from basic state @,/@,, versus Bi and w 
for pure interfacial flow. 

Figure 9 also shows the dependence of Z7/I7, on Bi and w at Rs = lo-'. Although 
the sensitivity to Bi is typically stronger than that to w, the deviation from the basic state 
vanishes (i.e. 17/IIb+ 1) at very high and low Bi, and yields a maximum between 
3 < Bi < 10. When Bi is large, heat transfer is limited by conduction, and the 
interfacial and domain temperature distributions are affected less by fluid motion 
within the cavity. With vanishing Bi, on the other hand, the more uniform liquid 
temperature restricts the magnitude of temperature variation near the surface. The 
maximum deviation occurs at the transition between conduction- and convection- 
limited heat transfer processes, when fluid convection within the domain plays a key 
role in dictating the temperature distribution. 

Evaporation and condensation also have different effects on the temperature 
gradient and the thermocapillary force along the surface. Figure 10 shows the ratio 
@,/@,* as a function of Bi and w.  The fact that @,/@,, < I for evaporation confirms 
that this mode of interfacial transport tends to reduce the average temperature gradient 
and cause a lower total thennocapillary force in the vertical direction than the basic 
state. It also suggests that evaporation may suppress the total thennocapillary force in 
a combined flow situation. Condensation exhibits an opposite effect on the 
thermocapillary force with @,/@,, > 1 .  As in the case of II/I7,, at very high and low 
values of Bi there is little deviation from the basic state. Although it is not shown in 
figure 10, the maximum deviation occurs at Bi x 1 for evaporation and lower values 
for condensation. 

The influence of condensation and evaporation on circulation is summarized in 
figure 11. Although the half-cavity circulations for the two modes are opposite in sign, 
the differences in magnitude are very small. The most apparent trend is the higher 
circulation associated with small contact angles. This is due to the larger centreline 
velocities caused by the increase in and exposed surface area. With large w ,  the 
streamlines become more perpendicular to the surface and further reduce the 
contribution of surface velocity to circulation intensity. The importance of these trends 
will become apparent later when we discuss the effect of fluid flow on dynamic pressure 
and show that the combination of higher circulations and small contact angles 
promotes large interfacial pressure gradients. 
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FIGURE 12. Flow field and temperature distributions for pure thermocapillary flow with 
Mu = lo3, Bi = 10 and w = 15". 

5.3.  Pure thermocapillary flow 
To examine pure thermocapillary flow, the interfacial resistance is fixed at a high value 
(Rs = lo3) to eliminate the normal component of velocity and ensure parallel flow at 
the surface. Figure 12 shows the steady-state Y- and T-distributions for a subcooled 
and superheated cavity with Ma = lo3, Bi = 10 and w = 15". For both heating modes, 
the thermocapillary stress, which acts opposite to the surface temperature gradient, 
establishes twin counter-rotating vortices symmetric about the cavity centreline. With 
subcooling, the meniscus temperature gradient from the centreline to the walls is 
negative and causes a traction towards the comers. This establishes counterclockwise 
and clockwise rotations in the left and right sides of the cavity, respectively. With 
superheated boundaries the gradient is positive and the traction on either side is 
directed into the centre. The senses of cell rotation for the two heating modes are 
opposite. 
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Bi 
FIGURE 13. ZI/ l7 ,  versus Bi for pure thermocapillary flow with Mu = loa and o = 15' 

In the case of subcooling, surface fluid convected towards the sides of the cavity 
deforms the isotherms away from the centreline and establishes a higher (aT/asl in the 
vicinity of the sidewall. Return circulation from the lower portion of each cell convects 
subcooled liquid upwards through the centre, thus compressing the isotherms and 
causing a temperature depression in the middle of the surface. With superheating, the 
isotherms near the surface deform into the centre of the cavity due to the transport of 
heated liquid from the sidewalls. This circulation, which is consistently stronger than 
subcooling, causes isotherm deformation in the direction of flow and a reduction of 
(aT/as( near the comers. The isotherms about the axis of symmetry extend down into 
the fluid due to the transport of cool liquid from the surface. The circulation is also 
evidenced by the return flow at the bottom which shifts the isotherms towards the 
sidewalls. 

Results from other combinations of Ma and Bi indicate that superheating 
consistently yields a stronger circulation than subcooling. This difference is primarily 
due to the manner in which the circulation cells situate near regions of concentrated 
stress. That is, the cells shift towards the sidewall with subcooling, but move towards 
the centreline when superheated. The viscous losses associated with these positions are 
quite different. At the sidewall, subcooled flow accelerated along the surface encounters 
the stationary boundary at a higher relative velocity than the superheated regime, 
which meets it at the bottom of the cell. Thus, the viscous losses along the walls are 
greater for the subcooled regime. At the centreline, however, both modes experience a 
slip condition caused by opposing flow from the other side of the cavity. Although the 
viscous losses here are greater for superheating, the losses for both modes are less than 
those at the sidewall. Consequently, the superheated flow regime incurs less viscous 
losses and a higher circulation than subcooling. 

The response of surface temperature to thermocapillary convection yields a more 
complex deviation of l7 from the basic state than pure evaporation or condensation. 
Figure 13 shows 17/nb as a function of Bi for Mu = lo3. We see that the deviation in 
17 for both heating modes increases with Bi. With superheating, hot liquid flows from 
the sidewalls to the centre, and from the bottom to the corners. Cellular convection in 
this case is complementary to the interfacial temperature gradient and tends to raise 17. 
This observation was also made by Chen et al. (1989) who noted an increase in average 
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FIGURE 14. Half-cavity circulation as a function of Bi and Mu 
for pure thermocapillary flow and w = 15". 

interfacial temperature with larger values of Ma and Bi. With subcooling, however, the 
heated liquid convected along the surface tends to raise interfacial temperature and 
lower Z7, while the upward circulation of cooler fluid causes a localized depression in 
the temperature profile that increases Z7. This competition arises because upwelling 
opposes the surface temperature gradient and can cause aT/as to vary in sign between 
the centreline and sidewall. Although the influence of upwelling increases with Bi, 
ZT/nb for subcooling is always less than superheating. In fact, at low Bi surface 
convection dominates the interfacial temperature profile and n/nb < 1. 

Figure 14 illustrates the variation in circulation magnitude with Bi for Ma = 10' and 
1 O? As noted before, the circulation for superheating is consistently higher than 
subcooling due to the difference in viscous losses. In addition, lCI tends to increase with 
Bi due to the greater temperature gradients. At low Ma, the values of I q  for both 
modes converge at high and low Bi due to the reduced convection-driven distortion of 
the temperature field. As Bi+O, the more uniform surface temperature causes 
aT/as + 0 and ICl+ 0. Alternatively, as Bi+ co, the temperature field becomes 
conduction-limited and independent of fluid convection. These trends also apply at the 
higher value of Ma (= lo3) and low Bi due to the vanishing circulation. At higher Bi, 
however, the surface temperature is much more sensitive to superheating and acquires 
a distribution that increases the thermocapillary stress force relative to subcooling. 
This difference in behaviour persists as Bi+ a. 

To examine the influence of contact angle on the thermocapillary-driven flow field, 
we consider w = 75", 45" and 15", while holding Ma and Bi constant at loa and 10, 
respectively. Figure 15 compares the half-cavity Y-distributions for 75" and 15", and 
clearly indicates a suppression of circulation at larger contact angles. This result seems 
to contradict Kamotani & Platt (1992) who noted a decrease in circulation intensity 
with smaller w .  The disparity is primarily due to the asymmetric heating conditions that 
they imposed versus the symmetric heating considered in this paper. In their problem, 
9, makes the principal contribution to the net thermocapillary force, while the 
influence of 8, is negligible. Unlike the reference behaviour noted for 8, in figure 7, 
8, for the asymmetric configuration tends to increase with larger contact angles 
(Schmidt 1993). 
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FIGURE 16. Surface dynamic pressure P at four nodes adjacent to left sidewall for pure 
thermocapillary flow with Ma = lo2 and Bi = 10. 

Upon comparing the circulation trends here with those for pure evaporation and 
condensation in figure 11, we see that the circulation magnitude arising solely from 
phase change has a much lower magnitude than that for thermocapillary flow. 
However, the magnitudes in figures 11 and 15 share the same functional dependence 
on o. We will show later that this tendency provides an additive effect on parameters 
that depend on w, such as the dynamic pressure gradient, in combined flow situations. 

An important feature of this flow regime is the manner in which small contact angles 
lead to large dynamic pressure gradients near the sidewall region. This phenomenon is 
illustrated in figure 16 which shows pressure values at the four surface nodes adjacent 
to the left sidewall. With subcooling, surface flow directed towards the sidewalls causes 
a rise in pressure and a suction in the middle of the meniscus. With superheating, the 
flow is reversed towards the centreline resulting in a suction at the sidewalls. In all 
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FIGURE 17. Flow field and temperature distributions for combined thermocapillary/interfacial 
flow with Ma = lo8, Rr = IO-l, Bi = 10 and o = 15'. 

cases, the pressure distribution in the centre of the cavity is relatively flat, and only 
becomes significant at the sidewall. The chief cause of this phenomenon is the need to 
accommodate a large mass flow rate through an area that becomes increasingly 
constricted with smaller contact angles. The difference in sign (i.e. P Q 0 for 
superheating and P $ O  for subcooling) is due to the different directions of 
thermocapillary stress application. 

5.4. Combinedjlow regimes 
Since interfacial phase change and thermocapillary yield opposing circulations when 
subjected to the same heating conditions, the combined regime reflects a competition 
between two convection modes. The relative influence of each is indicated by the half- 
cavity circulation C which changes sign according to the predominance of either 
regime. 

Figure 17 shows examples of combined mode condensation and evaporation for 
Ma = lo3, Rs = lo-' and Bi = 10. With subcooling, the flow field assumes a circulation 
pattern similar to its pure thermocapillary counterpart, but it also contains negative- 
value streamlines representing the flow of condensing liquid from the interline region 
to the bottom of the cavity. Unlike the pure thermocapillary case in figure 12, this flow 
tends to shift the vortices on either side of the cavity to the centreline, and causes a 
distention of surface isotherms towards the bottom, similar to its pure condensation 
counterpart. From the standpoint of circulation, C = 46.45, which is less than the 
value of its pure thermocapillary counterpart (C = 56.24). Although the combined 
regime seems to be thermocapillary-dominant, its Ih'l value of 0.55 is less than either 
the pure thermocapillary or condensation cases (which are 0.62 and 0.56, respectively). 
The reason for this is indicated in figure 17 by the difference between sidewall and 
centreline streamfunctions at x2 = 0, i.e. IAY, which reflects mass transfer through the 
half-cavity. For the combined regime, IAY = 2.73, which is close to the value for pure 
condensation (IAV = 2.78). 

It is clear that the heat transfer for combined convection does not represent a simple 
superposition of thermocapillary and condensation effects. Rather, thermocapillarity 



342 G. R. Schmidt, T. J. Chung and A. Nadarajah 

modifies the surface temperature in a manner that augments the tendency of 
condensation to accumulate warm fluid on the surface. This behaviour is tantamount 
to removing the (a-increasing influence of upwelling in subcooled thermocapillary 
flow. In combined mode condensation, the cooler centre region that results from 
upwelling is eliminated by warm condensate in the middle of the cavity. Without this 
offsetting influence, the sole action of thermocapillary is to extend this warm region 
towards the corners, thereby lowering the thermal potential relative to pure 
condensation. 

With superheating, the evaporation flux, which is represented by positive-value 
streamlines, convects the vortices and liquid towards the corners. The circulation 
magnitude for this case (C= -102.31) is lower than its pure thermocapillary 
counterpart (C = - 137.85), but the flow clearly remains thermocapillary-dominant. 
The thermal potential for superheating remains the same as pure thermocapillary flow 
at Ihl = 0.797. Although the flow field is thermocapillary-dominant in terms of 
circulation and thermal potential, the total mass flow rate across the meniscus 
( I A q  = 3.77) is greater than its pure evaporation counterpart (lay = 3.49), and the 
surface temperature profile promotes evaporation. 

Figure 17 clearly shows that evaporation and condensation compete with 
thermocapillary flow by reducing the magnitude of half-cavity circulation. However, 
the trends noted for l A q  and Ihl indicate that thermocapillarity tends to accentuate 
the influence of condensation and evaporation on interfacial heat/mass transfer and 
surface temperature. 

The influence of Mu, Rs and Bi is summarized in figure 18 which shows circulation 
versus Rs for Mu = 10 and lo2, and Bi = 1, 10 and lo2. To facilitate comparisons, a 
corrected circulation C* is used, where C* = C for superheating/evaporation and 
C* = - C for subcooling/condensation. With these definitions, thermocapillary- 
dominance is indicated when C* < 0, while phase-change-dominance occurs when 
CC > 0. The transition region is defined to include not only the crossover point at 
C* = 0, but also the bounds where C* changes from being relatively independent of Rs 
(i.e. Rs > 1) to being strongly dependent on Rs and Bi (i.e. Rs 4 10-l). 

At the lower limit of Bi (= l), thermocapillary flow is relatively weak compared to 
either condensation or evaporation. The low interfacial temperature gradient in this 
case yields a very low circulation intensity in the thermocapillary-dominant region. The 
influence of Ma in this case is vanishingly small as illustrated by the almost negligible 
difference in C* between Mu = 10 and lo2. For this range of Ma, the transition regime 
occurs between 0.5 < Rs < 10. At lower values of Rs (i.e. Rs -c 0.1) interfacial flow 
clearly dominates and dictates circulation intensity. 

With superheating, the influence of Ma on C* essentially vanishes for Rs < lO-l, and 
the flow becomes solely a function of Bi and Rs. The increasing accumulation of warm 
liquid as R s + O  reduces the interfacial temperature gradient and diminishes the 
influence of Ma. This behaviour, however, does not apply to subcooling, which 
assumes a lower C* and distinct Ma-dependency for Rs < lo-'. As discussed before, 
the lower C* is due to the suppressing influence of condensation on I q .  This reduction 
in is complemented by an associated increase in 8, and thermocapillary stress. 
Thus, the differences in Ma persist at low Rs, and tend to augment the suppression of 
14 at larger condensation rates. 

At higher Bi (= lo), the increased temperature gradient shifts the transition to 
thermocapillary dominance to lower values of Rs. In addition, the flow field and 
transition region are more sensitive to values of Ma. At the lower limit of Ma (= lo), 
thermocapillary flow is still relatively weak, and the transition region shifts only 
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slightly to the left. At higher Ma (= lo2), however, the shift to a range of 
0.03 c Rr c 0.3 is more noticeable. Although it cannot be discerned from the plot, we 
expect C* for Ma = 10 and lo2 to converge as Rs-t 0. 

We again observe the different slopes exhibited by the subcooling and superheating 
curves in the transition region due to the opposite influence of evaporation and 
condensation on interfacial temperature. With superheating and evaporation, 
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interfacial temperature and increase steadily with lower Rs due to isotherm 
compression. With subcooling, however, is reduced owing to distension of 
isotherms towards the bottom of the cavity. The Rs value at which this behaviour 
becomes noticeable tends to decrease at higher Bi. At Ma = lo', the crossover point 
occurs near the transition C* = 0. This means that over the entire range of Rs and Bi, 
C* for superheating is always greater than subcooling. This is not the case at the lower 
limit of Ma. Here, it appears that there are values of Rs at which C* is greater for 
condensation. 

A further increase in Bi to 10' yields the same trends as before. Here, however, the 
thermocapillary influence is even greater as reflected by the clearly lower transitional 
ranges. The transition from thermocapillary flow at Ma = 10 occurs at Rs x 0.5, while 
at Ma = 10' it occurs at Rs z 0.05. The temperature suppression of condensation is 
also more evident and creates a distinct disparity in the C* values for subcooling and 
superheating in the interfacially dominated flow region. With this combination of 
parameters it appears that the influence of thermocapillarity persists for Rs < lo-' 
since the curves do not appear to converge. However, it is expected that the 
convergence noted before will occur as Rs-t 0. 

The influence of Rs and Bi on 14 at Ma = 10' is shown in figure 19. With 
superheating, both thermocapillarity and evaporation augment one another in terms 
of their influence on la. Since the Marangoni number examined here is too small to 
effect appreciable distortion of the temperature field, the value of 14 in the 
thermocapillary-dominant regime (Rs 2 1) is essentially constant and equivalent to the 
basic-state value in figure 6.  For Rs < 1, however, increases relative to the basic 
state due to the compression of isotherms towards the surface. We also see that the 
deviation in 17 is greatest at a Bi close to 10, which is consistent with trends for 
pure evaporation in figure 9. With condensation, the thermal potential in the 
thermocapillary-dominant region still closely approximates the basic state because of 
the small isotherm deformation. With reduced Rs, however, Ifl decreases owing to 
the previously noted increase in surface temperature. 

Figures 18 and 19 clearly illustrate the complex interactions between thermocapillary 
flow and evaporation/condensation. The parameters Ma, Rs and Bi are useful in 
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thermocapillary flow with Mu = lo2, Rs = 10-1/2 and Bi = 10. 

delineating the various regimes and types of interactions. High values of Ma, R.Y and 
Bi all lead to thermocapillary dominance, while low values promote evaporation or 
condensation. The interactions appear to be maximized at intermediate values, such as 
Ma = lo3, Rs = lo-' and Bi = 1 or Ma = lo2, Rs = and Bi = 10. These cases are 
of interest in examining the effect of convection on surface morphology. 

In figures 11 and 14 we found that small contact angles increase circulation intensity 
for both pure evaporation/condensation and thermocapillary flow. In addition, we 
showed in figure 16 that the increase in circulation with pure thermocapillary flow can 
lead to large dynamic pressure gradients near the meniscus contact line. We had argued 
in $5.3 that w should have an even stronger effect on the flow field and lead to larger 
dynamic pressure gradients for the combined regime. Figure 20 shows the dynamic 
pressures near the sidewall for Ma = lo2, Rs = 10-1/2 and Bi = 10. It is likely that the 
meniscus could not sustain such large gradients, thus violating the assumption of fixed 
meniscus shape in this study. In a subsequent paper we will reconsider the retention 
problem while accounting for a deformable interface, and it will be shown that such 
excessive pressure gradients can indeed lead to large deformations of the free surface. 

6. Conclusions 
The influence of two-phase thermocapillary convection on the flow and thermal 

behaviour of a volatile wetting fluid in a small open cavity has been examined. Owing 
to the complexity of the problem, we first considered the effects of interfacial phase 
change and thermocapillarity separately before analysing their simultaneous influence. 
The convection associated with pure evaporation tends to raise the temperature 
difference between the meniscus and bulk vapour, thereby promoting interfacial 
transport. Condensation, however, exhibits an opposite effect due to the accumulation 
of warm fluid on the surface. These differences are maximized at an intermediate value 
of Bi of around 10. The circulation associated with both modes is comparable and 
tends to increase with lower values of Bi. 

Both subcooled and superheated thermocapillary flow tend to raise the average 
temperature difference relative to the basic state. However, the increase for subcooling 
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is less, owing to the competition between surface convection and upwelling in the 
centre of the pore. The magnitude of circulation produced by superheating is also 
greater owing to its lower viscous losses in the vicinity of the sidewall. Unlike 
evaporation and condensation, the circulation intensity for pure thermocapillary flow 
tends to increase with Bi. 

In the combined regime, phase change and thermocapillarity compete in dictating 
half-cavity circulation. The transition between a thermocapillary- and interfacially 
dominant flow structure depends on the relative values of Rs, Ma and Bi. Larger values 
of these three parameters favour thermocapillary flow, while smaller values lead to 
evaporation or condensation dominance. However, the two modes augment each 
other’s effect on heat and mass transfer across the meniscus. That is thermocapillarity 
tends to decrease the interfacial transport associated with condensation, but promotes 
it with evaporation. 

The contact angle was shown to have a strong effect on the heat transfer and 
circulation for both heating modes. Lowering the contact angle increases the 
circulation for both pure evaporation/condensation and thermocapillary flow. In the 
combined regime, this trend is even more significant and encourages development of 
large dynamic pressure gradients along the meniscus near the sidewall. Such large 
gradients indicate that assuming a non-deforming meniscus is probably inappropriate, 
and may lead to mechanical non-equilibrium under some conditions. 
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